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Gelsemine (1), the major alkaloid of Gelsemium sempervirens 
(Carolina jasmine), has been the target of numerous synthetic 
studies.1'2 Although the cage substructure of gelsemine has been 
prepared by a number of research groups,3-* only recently have 
two syntheses of gelsemine been described.7 Both of these 
syntheses proceed through 21-oxogelsemine (2), a bis-lactam 
reported to be a minor constituent of G. sempervirens.*•* We 
have also recently completed a synthesis of racemic 2, and our 
route is described herein. 

Our plan revolved around preparation of the tricyclic gelsemine 
substructure 3, followed by sequential introduction of the oxindole 
at C-4, construction of the tetrahydropyran substructure, and 
conversion of the C-20 substituent into a vinyl group. We have 
already described a synthesis of a structure related to tricyclic 
lactam 3, but several operational changes that were critical to 
completion of the synthesis of 2 have been developed during the 
interim, and these are described in Scheme I.10 A Diels-Alder 
reaction between iV-methylmaleimide and diene 4 (toluene, 110 
0C), followed by treatment of the crude cycloadduct with 2,2-
dimethyl-l,3-propanediol and catalytic amounts of p-toluene-
sulfonic acid, gave perhydroisoindole 5 in 43% yield. Formal 
dehydration of 5 following the Grieco protocol gave 6 in 79% 
yield, and reduction of the imide with sodium borohydride gave 
carbinol lactam 7 in 80% yield.11 Early in our studies, acidic 
ethanol was used to convert 7 to 8, but this process proved to be 
capricious due to problems associated with ketal hydrolysis. It 
was eventually found that treating 8 with sodium hydride and 
ethyl iodide accomplished the same transformation in 98% yield 
without complications. Alkylation of the lithium enolate of 8 
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" (a) iV-Methylmaleimide, toluene, A; 2,2-dimethyl-l,3-propanediol, 
P-TsOH. (b) 0-NO2PhSeCN, B-Bu3P; H2O2. (c) NaBH4, MeOH. (d) 
NaH, EtI, THF. (e) LDA, BnOCH2Cl. (O O3, MeOH; Me2S. (g) 
(Ph)3P=CHCO2Et, CH2Cl2. (h) PhSH, p-TsOH, CH2Cl2. (i) 
W-Bu3SnH, AIBN, PhH, A. (j) PhMgBr, THF. (k) NaH, MeI, DMF. 
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with benzyl chloromethyl ether proceeded smoothly to give 9 in 
95% yield. Although we were able to convert 9 to aldehyde 10 
under Johnson-Lemieux conditions, this reaction also proved 
capricious, as epimerization of the aldehyde was frequently a 
problem.12 Ozonolysis of 9 followed by a reductive workup with 
dimethyl sulfide, however, reproducibly gave crystalline 10 (mp 
117-119 ° C) in 64-67% yields. Wittig olefination of 10 gave 11 
and ethoxy-thiophenoxy exchange afforded 12 in 65% overall 
yield. Finally, free-radical cyclization gave the gelsemine 
substructure 3 (mp 109-110 0C) in 61% yield. 

The next task was introduction of the oxindole substructure 
at C-4. This was to be accomplished by free-radical cyclization 
of appropriate derivatives of vinylogous carbamic acid 16, whose 
preparation is described in Schemes 1 and 2.13 Treatment of 3 
with phenylmagnesium bromide, alkylation of the resulting 
tertiary alcohol 13 (mp 186-188 0C) with iodomethane, and 
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18 h. (c)TFA,Et3SiH,CH2Cl2. (d) BBr3, CH2Cl2. (e) Dess-Martin 
oxidation, (f) Cp2TiMe2, THF, A. 

deblocking of ketal 14 (mp 74-79 0C) using p-toluenesulfonic 
acid in acetone, gave ketone 15 (mp 165-167 0C) in 81% overall 
yield. Acylation of ketone 15 using sodium hydride, catalytic 
amounts of potassium hydride, and o-bromophenyl isocyanate 
gave 16 (mp 173-180 0C) in 81% yield.14 Free-radical cyclizations 
of several derivatives of 16 were examined, and it was eventually 
determined that 17, prepared in 98% yield from 16, provided the 
most useful results in terms of stereochemistry. Thus, treatment 
of 17 with tri-n-butyltin hydride under photochemical conditions 
gave oxindole 18 (mp 133-135 0C) in 40% yield, along with 15% 
of 19 and 10% of 20.15 

The synthesis of 21-oxogelsemine was completed as shown in 
Scheme 3. Treatment of 18 with />-toluenesulfonic acid in 
dichloromethane followed by the addition of methanol to the 
reaction mixture gave olefin 21 (mp 211-212 0C) in 90% yield. 
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(1 S) We have demonstrated that alcohols derived from structures of type 
19 and 20 isomerize to oxindoles having the desired C-4 sterechemistry via 
a retroaldol-aldol sequence. Details of this process will be described elsewhere. 

Ozonolysis of the double bond gave 22 (mp 231-233 0C) in 65% 
yield, along with 15%ofanepoxidederivedfrom21.16 Treatment 
of 22 with hydrochloric acid in aqueous DME at 48 0C for 18 
h accomplished acetate hydrolysis and isomerization of the 
aldehyde to afford a mixture of diastereomeric hemiacetals 23 
in 64% yield. Reduction of this mixture with triethylsilane-
trifluoroacetic acid gave 24 (81 %, mp 189-190 0C), and removal 
of the benzyl protecting group with BBr3 afforded alcohol 25 
(90%, mp 303-309 0C), whose structure was confirmed by X-ray 
crystallographic analysis.17"19 Oxidation of 25 using the Dess-
Martin periodinane gave aldehyde 26 (mp 278-280 0C) in 71% 
yield.20 Finally, methylenation of 26 using bis(cyclopentadienyl)-
dimethyltitanium afforded 21 -oxogelsemine (2) in 75% yield (mp 
155-159 0C).21-22 

In summary, a total synthesis of 21-oxogelsemine has been 
accomplished in 23 steps from diene 4.23 The synthesis features 
two free-radical cyclization reactions and a protocol for construc­
tion of the tetrahydropyran after installation of the oxindole 
substructure. 
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